More precisely, radially and azimuthally polarized beams can be built as a superposition of two antiparallel twisted light beams having $\large \{\ell=1,\sigma=-1\}$ and $\large \{\ell=-1,\sigma=1\}$. In their head-on or on-center interaction with nanoparticles we apply the approximation of small $\large q_r r \ll 1$.
|
Azimuthally polarized fields are given by the sum of those TL beams:
\begin{eqnarray}
\large E^{\mathrm{(az)}}_\varphi (\mathbf r,t) &=& \large E_0 (q_r r) e^{i(q_z z - \omega t)} +\textrm{c.c.}
\nonumber \\
&--& \nonumber \\ \large B^{\mathrm{(az)}}_r (\mathbf r,t) &=& \large - B_0 (q_r r) e^{i(q_z z - \omega t)} +\textrm{c.c.}
\nonumber \\
\large B^{\mathrm{(az)}}_z (\mathbf r,t) &=& \large - 2 i B_0 \frac{q_r}{q_z} e^{i(q_z z - \omega t)} +\textrm{c.c.} \,.
\,,
\end{eqnarray}
with all other components equal to zero. On the other hand the radially polarized fields given by the difference of the two antiparallel beams are
\begin{eqnarray}
\large E^{\mathrm{(rad)}}_r (\mathbf r,t) &=& \large i E_0 (q_r r) e^{i(q_z z - \omega t)} +\textrm{c.c.}
\nonumber \\
\large E^{\mathrm{(rad)}}_z (\mathbf r,t) &=& \large - 2 \frac{q_r}{q_z} E_0 e^{i(q_z z - \omega t)} +\textrm{c.c.}
\nonumber \\
&--& \nonumber \\ \large B^{\mathrm{(rad)}}_\varphi (\mathbf r,t) &=& \large i B_0 \left[ 1 + \left(\frac{q_r}{q_z}\right)^2 \right] (q_r r) e^{i(q_z z - \omega t)} +\textrm{c.c.} \,.
\,,
\end{eqnarray}
with all other components equal to zero.
References
[1] Y. Saito, M. Kobayashi, D. Hiraga, K. Fujita, S. Kawano, N. I. Smith, Y. Inouye, and S. Kawata, J. Raman Spectroscopy 39, 1643 (2008).
[2] H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, Nat. Photon. 2, 501 (2008).
[3] M. Meier, V. Romano, and T. Feurer, Appl. Phys. A 86, 329 (2007).
[4] Q. Zhan, Optics Express 12, 3377 (2004).
[5] B. Sbierski, G. Quinteiro, and P. Tamborenea, J. Phys. Cond. Matter 25, 385301 (2013).
[6] G. F. Quinteiro and T. Kuhn, Phys. Rev. B 90, 115401 (2014).
[7] C. Gabriel, A. Aiello, W. Zhong, T. Euser, N. Joly, P. Banzer, M. F¨ortsch, D. Elser, U. L. Andersen, C. Marquardt, et al., Phys. Rev. Lett. 106, 060502 (2011).
0 comments:
Post a Comment